Lesson: Light-Reflection and Refraction

Question: 1

Define the principal focus of a concave mirror.

Solution

It is a point on the principal axis where the light rays that are parallel to the principal axis converge, after reflecting from the mirror.

Question: 2

The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

Solution

Radius of curvature,  R=20 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamOuaiabg2da9iaaikdacaaIWaGa aeiiaiaabogacaqGTbaaaa@4170@

Radius of curvature of the spherical mirror =2×focal length ( f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaeyypa0JaaGOmaiabgEna0kaabAga caqGVbGaae4yaiaabggacaqGSbGaaeiiaiaabYgacaqGLbGaaeOBai aabEgacaqG0bGaaeiAaiaabccapaWaaeWaaeaapeGaamOzaaWdaiaa wIcacaGLPaaaaaa@4D8D@

i.e.,

  R=2f f=  R 2 = 20 2 =10 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOabaeqabaaeaaaaaaaaa8qacaWGsbGaeyypa0JaaGOmaiaa ykW7caWGMbaabqaWaiaadAgacqGH9aqpcaGGGcWaaSaaaeaacaWGsb aabaGaaGOmaaaacqGH9aqpdaWcaaqaaiaaikdacaaIWaaabaGaaGOm aaaacqGH9aqpcaaIXaGaaGimaiaabccacaqGJbGaaeyBaaaaaa@4E72@

Question:3

Name the mirror that can give an erect and enlarged image of an object.

Solution

Concave mirror.

Question:4

Why do we prefer a convex mirror as a rear-view mirror in vehicles?

Solution

Convex mirrors always form a virtual, erect, and diminished image of the objects placed in front of it. This helps in getting a wider view of objects, traffic and people behind the vehicle.

Question: 5

Find the focal length of a convex mirror whose radius of curvature is 32 cm.

Solution

Given:

The radius of curvature,  R=32 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamOuaiabg2da9iaaiodacaaIYaGa aeiiaiaabogacaqGTbaaaa@4173@ .

Radius of curvature,

R=2×focal length( f ) R=2, f= R 2 = 32 2 =16 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOabaeqabaaeaaaaaaaaa8qacaWGsbGaeyypa0JaaGOmaiab gEna0kaabAgacaqGVbGaae4yaiaabggacaqGSbGaaeiiaiaabYgaca qGLbGaaeOBaiaabEgacaqG0bGaaeiAa8aadaqadaqaa8qacaWGMbaa paGaayjkaiaawMcaaaWdbeabadGaeyO0H4TaamOuaiabg2da9iaaik dacaGGSaGaaeiiaiaadAgacqGH9aqpdaWcaaqaaiaadkfaaeaacaaI Yaaaaiabg2da9maalaaabaGaaG4maiaaikdaaeaacaaIYaaaaiaab2 dacaaIXaGaaGOnaiaabccacaqGJbGaaeyBaaaaaa@6078@

Question: 6

A concave mirror produces three times magnified (enlarged) real image of object placed at 10 cm in front of it. Where is the image located?

Solution

Magnification produced by a spherical mirror, m = height of the image/height of the object.

Let the height of the object be h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIWaaabeaaaaa@37C9@  and the height of the image be h1.

m= h 1 h 0 =- u v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam yBaiaaykW7caqG9aWaaSaaaeaacaWGObWaaSbaaSqaaiaadgdaaeqa aaGcbaGaamiAamaaBaaaleaacaWGWaaabeaaaaGccaqG9aGaaGPaVl aad2cadaWcaaqaaiaadwhaaeaacaWG2baaaaaa@4453@

The height of the image, h 1 =-3 h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGXaaabeaakiGac2dacaaMc8UaaiylaiaacodacaWGObWa aSbaaSqaaiaadcdaaeqaaaaa@3D53@  (The image formed is real.)

-3h h = -v u v u =3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbmLMB1HhicL2BSLMB11garmWu51MyVXgaruWq VvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaaciWacmaadaqabeaaea qaauaaaOabaeqabaWaaSaaaeaacaqGTaGaae4maiaadIgaaeaacaWG Obaaaiaab2dadaWcaaqaaiaab2cacaWG2baabaGaamyDaaaaaeabad WaaSaaaeaacaWG2baabaGaamyDaaaacaqG9aGaae4maaaaaa@468C@

Object distance,  u=10 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamyDaiabg2da9iabgkHiTiaaigda caaIWaGaaeiiaiaabogacaqGTbaaaa@427F@
v =3×( 10 )=30 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamODaiaacckacqGH9aqpcaaIZaGa ey41aq7damaabmaabaWdbiabgkHiTiaaigdacaaIWaaapaGaayjkai aawMcaa8qacqGH9aqpcqGHsislcaaIZaGaaGimaiaabccacaqGJbGa aeyBaaaa@4BA9@
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh9frVeeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaciaacaqabeaada abauaaaOqaaGGaaKqzagaeaaaaaaaaa8qacqWFshI3aaa@3EBF@  An inverted image is formed at a distance of 30 cm in front of the given concave mirror.

Question: 7

A ray of light travelling in air enters obliquely into water. Does the light ray bend towards the normal or away from the normal? Why?

Solution

When a ray of light enters from an optically rarer medium to an optically denser medium, it bends towards the normal. Since water is optically denser than air, a ray of light travelling in water from air will bend towards the normal.

Question: 8

Light enters from air to glass having refractive index 1.50. What is the speed of light in the glass? The speed of light in vacuum is 3× 10 8   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWq VvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaea GaauaaaOqaaabaaaaaaaaapeGaaG4maiabgEna0kaaigdacaaIWaWd amaaCaaaleqabaWdbiaaiIdaaaGccaGGGcaaaa@422F@  ms-1.

Solution

Let the refractive index of the glass be ng.

n g  = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaeyO0H4TaamOBa8aadaWgaaWcbaWd biaadEgaa8aabeaak8qacaGGGcGaeyypa0daaa@427C@  speed of light in vacuum/speed of light in glass 
Speed of light in vacuum,
c=3× 10 8  m s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaam4yaiabg2da9iaaiodacqGHxdaT caaIXaGaaGima8aadaahaaWcbeqaa8qacaaI4aaaaOGaaiiOaiaad2 gacaWGZbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaaaa@47F3@
Refractive index of glass,
n g  =1.50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamOBa8aadaWgaaWcbaWdbiaadEga a8aabeaak8qacaGGGcGaeyypa0JaaGymaiaac6cacaaI1aGaaGimaa aa@4307@
Therefore, the speed of light in the glass

= speed of light in vacuum/refractive index of glass
= c n g = 3× 10 8 1.50 =2x 10 8   ms -1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaeyypa0ZaaSaaaeaacaWGJbaabaGa amOBa8aadaWgaaWcbaWdbiaadEgaa8aabeaaaaGcpeGaeyypa0ZaaS aaaeaacaaIZaGaey41aqRaaGymaiaaicdapaWaaWbaaSqabeaapeGa aGioaaaaaOqaaiaaigdacaGGUaGaaGynaiaaicdaaaGaeyypa0JaaG OmaiaadIhacaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI4aaaaOGa aiiOaiaab2gacaqGZbWdamaaCaaaleqabaWdbiaab2cacaqGXaaaaa aa@5358@

Question: 9

Find out, from Table, the medium having highest optical density. Also find the medium with lowest optical density.

Material

medium

Refractive index

Material medium

Refractive

index

Air

1.0003

Canada Balsam

1.53

Ice

1.31

-

-

Water

1.33

Rock salt

1.54

Alcohol

1.36

-

-

Kerosene

1.44

Carbon disulphide

1.63

Fused

quartz

1.46

Dense

flint glass

1.65

Turpentine oil

1.47

Ruby

1.71

Benzene

1.50

Sapphire

1.77

Crown

glass

1.52

Diamond

2.42

Solution

Diamond has the highest optical density.

Air has the lowest optical density.

Question: 10

You are given kerosene, turpentine and water. In which of these does the light travel fastest? Use the information given in Table.

Material
medium

Refractive index

Material medium

Refractive

index

Air

1.0003

Canada Balsam

1.53

Ice

1.31

-

-

Water

1.33

Rock salt

1.54

Alcohol

1.36

-

-

Kerosene

1.44

Carbon disulphide

1.63

Fused
quartz

1.46

Dense
flint glass

1.65

Turpentine oil

1.47

Ruby

1.71

Benzene

1.50

Sapphire

1.77

Crown
glass

1.52

Diamond

2.42

Solution

Light travels faster when the refractive index of a medium is less. The speed of light is inversely proportional to the refractive index. Of all three given media, water has the lowest refractive index. So light will travel the fastest in water.

Question: 11

The refractive index of diamond is 2.42. What is the meaning of this statement?

Solution

Light travels faster when the refractive index of a medium is less. The speed of light is inversely proportional to the refractive index. The refractive index of air is approximately 1.The refractive index of diamond is 2.42.

This means that the speed of light in diamond will reduce by a factor of 2.42 as compared to its speed in air.

Question:12

Define 1 dioptre of power of a lens.

Solution

1 dioptre is defined as the power of a lens having a focal length of 1 metre.

Question: 13

A convex lens forms a real and inverted image of a needle at a distance of 50 cm from it. Where is the needle placed in front of the convex lens if the image is equal to the size of the object? Also, find the power of the lens.

Solution

Given:

i.            Image is real and of same size. It implies that the position of image is at 2F.

ii.            Object distance, u= 50 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamyDaiabg2da9iabgkHiTiaabcca caaI1aGaaGimaiaabccacaqGJbGaaeyBaaaa@4326@
Image distance,
v=50 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamODaiabg2da9iaaiwdacaaIWaGa aeiiaiaabogacaqGTbaaaa@4197@
Focal length
= f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaeyypa0JaaiiOaiaadAgaaaa@3EB9@

According to the lens formula,

1 v - 1 u = 1 f 1 f = 1 50 - 1 (-50) = 1 50 + 1 50 = 1 25 f=25cm =0.25m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbmLMB1HhicL2BSLMB11garmWu51MyVXgaruWq VvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaaciWacmaadaqabeaaea qaauaaaOabaeqabaWaaSaaaeaacaqGXaaabaGaamODaaaacaqGTaWa aSaaaeaacaqGXaaabaGaamyDaaaacaqG9aWaaSaaaeaacaqGXaaaba GaamOzaaaaaeabadWaaSaaaeaacaqGXaaabaGaamOzaaaacaqG9aWa aSaaaeaacaqGXaaabaGaaeynaiaabcdaaaGaaeylamaalaaabaGaae ymaaqaaiaabIcacaqGTaGaaeynaiaabcdacaqGPaaaaaqaeamacaaM c8UaaGPaVlaaykW7caqG9aWaaSaaaeaacaqGXaaabaGaaeynaiaabc daaaGaae4kamaalaaabaGaaeymaaqaaiaabwdacaqGWaaaaiaab2da daWcaaqaaiaabgdaaeaacaqGYaGaaeynaaaaaeabadGaeyO0H4Taam OzaiGac2dacaqGYaGaaeynaiaaykW7caqGJbGaaeyBaaqaeamacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlGac2 dacaqGWaGaaeOlaiaabkdacaqG1aGaaGPaVlaab2gaaaaa@7759@

Power of the lens, P= 1 f(inmetres) = 1 0.25 =+4D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbmLMB1HhicL2BSLMB11garmWu51MyVXgaruWq VvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaaciWacmaadaqabeaaea qaauaaaOqaaiaadcfacaqG9aWaaSaaaeaacaqGXaaabaGaamOzaiaa bIcacaqGPbGaaeOBaiaaykW7caaMc8UaaeyBaiaabwgacaqG0bGaae OCaiaabwgacaqGZbGaaeykaaaacaqG9aWaaSaaaeaacaqGXaaabaGa aeimaiaab6cacaqGYaGaaeynaaaacaqG9aGaae4kaiaabsdacaqGeb aaaa@51F2@

Question: 14

Find the power of a concave lens of focal length 2 m.

Solution

Let the power of lens be P and the focal length be f

The power of the lens (P) of focal length f= 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaamOzaiabg2da9maalaaabaGaaGym aaqaaiaadAgaaaaaaa@3F4B@

= 1 2 =0.5 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbmLMB1H hicL2BSLMB11garmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlh91rFfeu0dXdh9vqqj =hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXd ar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaciaacaqabeaada abauaaaOqaaabaaaaaaaaapeGaeyypa0ZaaSaaaeaacaaIXaaabaGa eyOeI0IaaGOmaaaacqGH9aqpcqGHsislcaaIWaGaaiOlaiaaiwdaca qGGaGaamiraaaa@44A6@